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Abstract—Asymmetric non-reducing disaccharides containing an interglycosidic disulfide linkage were synthesised under mild
conditions through reaction of tetraacetyl-�-D-glucopyranosyl methanethiolsulfonate with O-acetylated 1-thio-aldopyranoses. The
preferred conformation around the �S�S� bond is close to that observed in unconstrained disulfides (−90°). © 2001 Elsevier
Science Ltd. All rights reserved.

Analogues of oligosaccharides in which an N, S, Se or
C atom replaces the glycosidic O-atom are well known
and have been investigated in detail. On the other hand,
few structures featuring a three-bond interglycosidic
connection (�X�Y�, with X, Y=O, N, C, S), in place
of the natural two-bond coupling between monosaccha-
ride units, are known.1,2 Some representatives of the
latter also occur in nature as components of important
antitumor antibiotics.2 Disulfide linkages play an essen-
tial role in stabilising tertiary structures of proteins, in

the formation of cyclopeptides and in many biologically
relevant systems. This structural motif is, however,
virtually non-existent within carbohydrates of either
synthetic or natural origin. Obvious exceptions are
symmetric disulfides formed through oxidation of 1-
thioaldoses and some glycosyl-aryl/alkyl disulfides that
have been known for a long time.3 A few cyclic
disulfide derivatives of mono-4 and disaccharides5 have
also been described. Disaccharide mimics wherein two
monosaccharide units are linked together by an
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extended chain containing an S�S bond have recently
been reported.6 Some neoglycoproteins represent recent
examples of interesting hybrid structures in which gly-
cosyl units are attached to proteins through S�S
linkages.7

We thought that the design of a novel type of non-sym-
metric oligosaccharide scaffold wherein a disulfide
bridge replaces interglycosidic oxygen would be of
interest for several reasons: (i) added flexibility within
the resulting compounds with respect to the reference
natural glycosides, (ii) increased distance between com-
ponents in terms of the number of connecting bonds (3
versus 2), (iii) extension of the available conformational
space as a result of (i) and (ii), and (iv) altered elec-
tronic and steric properties of the linker atoms. All
these characteristics play a significant role in biological
interactions involving carbohydrates8 such as in cell
recognition or proliferation or in carbohydrate
metabolism.

S-S-Linked disaccharide model compounds were readily
synthesised by adapting a general procedure9 to prepare
unsymmetrical disulfides (III) using alkylthiolsulfonate
esters (I) for transferring RS groups to thiols (II):

R-SSO2CH3
I

+R�-SH
II

�R-S-S-R�
III

+CH3SO2H

Thus, tetra-O-acetyl-�-D-glucopyranosyl methanethiol-
sulfonate (1), readily obtained10 from acetobromoglu-
cose by reaction with NaSSO2CH3, reacted smoothly
with 2,3,4,6-tetra-O-acetyl-1-thio-�-D-aldopyranoses
(2a–c)11 to furnish the protected �,�-(1,1�)-dithia-disac-
charides 3a–c in fair yields.12 The anomeric configura-
tions for both moieties in 3a and 3c are evident from
the anomeric proton–proton couplings (Table 1); these
data are, however, not relevant in the case of mannose
derivatives. On the other hand, we could unequivocally
confirm the �-configuration of the mannose unit in 3b
and 4b by measuring the 2JH1�C2 and 3JH1�C3 values
(Table 1)13 (Scheme 1).

Products 3a–c could be deacetylated smoothly under
Zemplén’s conditions and unprotected S�S disaccha-
rides 4a–c were obtained in near quantitative yields.12

The conformation around the glycosidic linkage is the
single most important factor in determining the molecu-
lar shape of oligosaccharides influencing biological

Figure 1. Structure of 3b with key NOEs (Man-H2 to Glc-
H2, -H4 and -H6a) indicated.

activity. Exploratory 1H–1H NOE measurements (1D
and 2D) on 3b disclosed significant interannular NOEs
between H-2 of the mannose residue and various glu-
cose ring protons as depicted in Fig. 1.

Inspection of molecular models indicated that in the
conformation required by NOEs the C1�S�S�C1� tor-
sion angle is ca. −80° to −90°; this value is virtually
identical with that observed in unconstrained
disulfides.14 It is known that the chemical reactivity of
the S�S bond depends strongly on the CSSC dihedral
angle14 and this parameter should also play a role in
biological interactions involving disulfides. It is of note
in this respect that a peculiar conformation around the
unusual three-bond (CNOC) interglycosidic linkage in
calicheamicin was shown to be the key structural ele-
ment that enables this molecule to bind in the minor
groove of DNA to exert its biological action.15
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Table 1. Thiol components and disulfide disaccharides

R5 R6Compd Config. R1 R2 R3 Relevant coupling constants (Hz)R4

3aOAc 3JH1�H2=10.4; 3JH1��H2�=9.92a, 3a, 4a D-gluco HAc NHAc H OAc
H OH 4a 3JH1�H2=9.2; 3JH1��H2�=10.6H NHAc H OH

3b 3JH1�H2=9.6; 3JH1��H2�=1.42b, 3b, 4b OAcD-manno HAc H OAc OAc
2JH1��C2�=6.2; 3JH1��C3��0
3JH1�H2=9.2; 3JH1��H2��1.54bOHHH H OH OH
2JH1��C2�=4.0; 3JH1��C3��0

3c 3JH1�H2=10.1; 3JH1��H2�=10.12c, 3c, 4c D-galacto Ac OAc H OAc OAc H
OH H 4cH OH 3JH1�H2=9.3; 3JH1��H2�=9.5H OH
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